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Acronyms

Aib α-Aminoisobutyric acid or Cα-methylalanine

(αMe)Phe Cα-methylphenylalanine

(αMe)Val Cα-methylvaline

BOP (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium

CIP 2-Chloro-1,3-dimethylimidazolidium phosphate

Db
z
g Cα,α-dibenzylglycine

Deg Cα,α-diethylglycine

Dφg Cα,α-diphenylglycine

Dp
n
g Cα,α-di-n-propylglycine

EDC 1-(3-Dimethylamino)propyl-3-ethylcarbodiimide

HATU  2-(1H-7-aza-1,2,3-benzotriazol-1-yl)-1,1,3,3-tetramethyl uronium 

hexafluorophosphate

HBTU  2-(1H-1,2,3-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

HOAt 7-Aza-1-hydroxy-1,2,3-benzotriazole

HOBt 1-Hydroxy-1,2,3-benzotriazole

HOSu 1-Hydroxysuccinimide

Iva Isovaline or Cα-methyl-α-aminobutyric acid
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PyBOP (Benzotriazol-1-yloxy)tripyrrolidinophosphonium

SPPS Solid-phase peptide synthesis

TBTU 2-(1H-1,2,3-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate

1.1 Introduction

This chapter deals with α-amino acids and α-peptides only, as they are currently the most 

extensively exploited in the materials chemistry field. However, it is worth remembering 

that studies and applications of β-peptides (and γ- and δ- as well, although to a limited 

extent) are growing significantly.

In 1907 Emil Fischer published the chemical synthesis of the 18-mer peptide H–l-Leu–

(Gly)
3
–l-Leu–(Gly)

3
–l-Leu–(Gly)

8
–Gly–OH, which represents a milestone in the history 

of peptide chemistry [1]. After Fischer’s remarkable achievement, it took almost 50 years 

for peptide chemists to synthesize a peptide longer than an octadecapeptide [2]. Only the 

introduction of the carbodiimide activating reagent in 1955 [3] and the SPPS technique in 

1963 [4] ignited an impressive development. The chemical synthesis of peptides then 

became accessible even to researchers without a specific training in organic synthesis.

Currently, a variety of methods is available to accomplish the chemical synthesis of 

peptides. Among the numerous reference books [5–9] and review articles [10–16], it is worth 

recalling the comprehensive and detailed account contained in the five-volume Houben–

Weyl series [17]; theoretical aspects and experimental procedures, both for protection and 

activation methods, are described in great detail. Therefore, in view of the ample literature 

and for the sake of brevity, Section 2.2 of this chapter will briefly describe only a few 

synthetic methods useful for the assembly of nonstandard peptides. Indeed, peptides 

designed for use in materials chemistry often contain sterically hindered, noncoded α-amino 

acids. The high number of protecting groups available will not be reviewed, as there is no 

need, in general, to use a specific protecting group when dealing with a difficult coupling.

Sections 2.3 to 2.5 will present the basic elements and parameters (amide bond and 

torsion angles) required to understand peptide conformations and an overview of the 

known, both common and unusual, peptide 3D structures.

With the aim at facilitating information retrieval, all sections are laid down in a 

schematic way.

2.2 Synthesis of Difficult Peptide Sequences

Couplings involving noncoded, sterically hindered α-amino acids are often characterized by 

low yields even after long reaction times. This modest reactivity may lead to racemization 

of chiral C-activated α-amino acids possessing an H atom on their α-carbon. Racemization 

(or epimerization) is even easier when the activation involves a peptide segment, because of 

the high chance of 5(4H)-oxazolone formation [7, 9, 18]. Therefore, syntheses via segment 

condensation have to be planned carefully. In general, racemization-free activation methods 

should be employed also in the case of a stepwise main-chain elongation.

Among the variety of available coupling reagents, those reported hereafter were selected 

because of their effectiveness with sterically hindered α-amino acids. The procedures 

described can be applied both to solution and solid-supported syntheses.



Symmetrical 
anhydride

 The symmetrical anhydrides of α-amino acids are usually prepared in situ 
by treating an Nα-protected amino acid with a half-equivalent of 
carbodiimide. However, better results in the coupling reactions are 
obtained when the anhydride is isolated beforehand [16, 17]. A tertiary 
amine is added to neutralize the Nα-protected amino acid liberated during 
the anhydride aminolysis.

 Peptide bond formation proceeds in satisfactory yields and low amounts 
of side products.

 When expensive amino acids are involved, the need for two equivalents 
of Nα-protected residues to form the symmetrical anhydride represents a 
serious drawback [14].

EDC/HOAt  The hydrosoluble carbodiimide EDC greatly facilitates the isolation and 
purifi cation procedures when operating in solution. It mediates the 
formation of an active ester between the aminoacyl moiety and the 
HOAt [19] hydroxyl group.

 HOAt has a greater racemization suppression ability as compared to 
HOSu [20] and HOBt [21] and it is more effective in catalyzing peptide 
bond formation. For the latter reason, it is used even when racemization 
is not a concern. Through its N2 and N7 atoms, HOAt assists the (amine) 
nucleophilic attack on both faces of the planar active ester (this is the 
conformation that was observed in the crystal state [22, 23]) [19, 24, 25].

 An active ester with HOAt (or HOBt) forms also when the CIP/HOAt 
[26], BOP [27], PyBOP [28], HBTU [29], TBTU [30], and HATU 
[31, 32] activating reagents are used.

HATU  Among the currently extensively used uronium salts, HATU is the 
reagent of choice in terms of coupling efficiency [33, 34] and amino 
acid derivative or peptide optical stability [35, 36]. It is often used in 
combination with one equivalent of HOAt.
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a-Aminoacyl 
fluoride

A major acylating species is believed be the active ester intermediate, as 
in the case of the EDC/HOAt activation procedure.
In view of its simpler procedure, the use of HATU represents a good 
choice for the SPPS incorporation of sterically hindered residues.
The α-aminoacyl fluoride method [37, 38] is more effective than the EDC/
HOAt and symmetrical anhydride procedures because of: (i) the small size 
of the leaving group (the fluoride ion), (ii) the activation of the carboxyl 
group induced by the high electronegativity of fluorine, and (iii) the slow 
rate of formation of the poorly reactive 5(4H)-oxazolone [38–40].
Nα-protected α-aminoacyl fluorides are easily prepared by treating the 
corresponding carboxylic acids with cyanuric fluoride [37]. In situ
preparation is also feasible [41]. However, better results are obtained 
with previously isolated α-aminoacyl fluorides.
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Remarkable achievements using this procedure are represented by the 
syntheses of the octapeptide –[(αMe)Val]8– [42] and the heptapeptide –
Iva-(αMe)Val–Iva–(αMe)Val–(αMe)Phe–(αMe)Val–Iva– [43].
The α-aminoacyl fluoride activation method is also excellent for SPPS 
protocols: four Aib residues in a row were successfully linked [44], 
peptaibols were synthesized in high purity and yields [45], and 
unnatural, sterically hindered amino acids were easily incorporated 
[46]. Its coupling efficiency was shown to be superior to that of the 
easy-to-use HATU [39, 47]. In addition, couplings can be performed 
even in the absence of any base, thus avoiding premature deblocking 
of the Fmoc N-protecting group or the undesired 5(4H)-oxazolone
formation [10].

a-Azidoacyl 
chlorides

In recent years, the use of α-azidoacyl chlorides in the synthesis of 
difficult peptide sequences significantly increased [48–51]. These 
reagents are very efficient in peptide bond formation mainly because 
they cannot form the slowly reacting 5(4H)-oxazolone (because the 
azide group lacks a carbonyl moiety).
The azide behaves as an Nα-protecting group: it can be easily converted 
into the free amine by catalytic hydrogenation.

R1 R1R1 R2 R2R2

O OO MeOH
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N3
N3

NHR3 NHR3H2N
H2N

Cl

α-azidoacyl chloride

R3

This coupling procedure requires preparation of appropriate α-azido
acid precursors and their subsequent conversion into α-azidoacyl 
chlorides. For this reason and for the care required in handling the 
potentially exploding azides, this activating method has not yet found 
a wider application. However, being probably the most effective among 
those illustrated here, it appears to be the method of choice for the 
formation of very difficult amide bonds.



1.3 Peptide (Amide) Bond

Where  Proteins and enzymes (and a variety of hormones and  
antibiotics as well) are naturally occurring polypeptide 
molecules.

 A dipeptide unit, formed by two α-amino acid building blocks, 
can be depicted as follows:
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CH
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C′
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R1
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N
N

H

H

 N, Cα
sp3, C′sp2: three atoms per amino acid residue in the main

chain (backbone).
 R1, R2 : side chains that differentiate the amino acids.
 According to a long-used convention [52, 53], the N-terminus  
of the main chain (residue 1) should be written on the far 
left side.

Electronic  
structure

Resonance of the secondary (–CO–NH–) peptide (amide) bond
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Mean length of C′sp2–N bond in peptides: 1.34 Å (from X-ray
diffraction analyses), intermediate between the lengths of  
Csp3–N (1.49 Å) and Csp2 = N (1.27 Å) bonds. Therefore, the C′sp2–N
bond in peptides has a partial double bond character.
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 In the trans isomer the R2 · · · O repulsion plays a significant 
role.

 However, in the cis isomer the R1 · · · R2 repulsion is even more 
severe.

 For secondary amides, the trans isomer is more stable  
than the cis isomer (by ~2 kcal/mole); the energy barrier 
between the two isomers (rotation about the C′–N bond)  
is ~18 kcal/mole.



1.4 Peptide Torsion Angles

Stereo-
chemical 
definitions

Peptide torsion angles (dihedral angles; angles between planes).
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In the fully extended (zig-zag) peptide conformation, depicted
above, the torsion angles j, y, w are ±180° (all-trans
conformation), according to the 1970 IUPAC-IUB Commission 
rules [54]. It is worth pointing out that all structural biochemistry 
textbooks are using this specific conformation for the illustration 
of a peptide chain, which, however, has been observed only 
extremely rarely in naturally occurring peptides and proteins (see 
below). Before 1970, the notation for j, y, w torsion angles was 
from 0° to 360°, as opposed to the current notation from –180° 
to 180°.
The central α-amino acid is in the L-configuration (for almost all 
protein amino acids L ≅ S, according to the 1956 Cahn–Ingold–Prelog 
[55] rule and notation).
As≥95% of the (mostly secondary) peptide bonds are trans (w =180°),
the conformational problem can be satisfactorily simplified by 
describing exclusively the sets of j, y torsion angles.
If a set of j, y torsion angles repeats itself almost identically along a
peptide chain, then various types of helical structures may generate, 
the characteristic parameters of which are:
° number of amino acid residues per helix turn (n);
° axial translation (d), i.e. shift (in Å) along the helix axis per

residue;
° pitch (p), where p = n × d, i.e. shift (in Å) along the helix axis

per turn.



Ramachandran 
map

The 1963 Ramachandran map [56, 57] was based on hard-sphere 
models.
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Subsequently, a variety of conformational energy computations 
largely confirmed this map.
This (asymmetric) map is that typical of an L(S)-α-amino acid.
The grey areas (15–20% of the total area) correspond to the allowed
conformations, i.e. free from severe intramolecular steric interactions 
(based on van der Waals radii of atoms).
The area of the allowed conformations for the only achiral protein 
amino acid (Gly, no R side chain) is much wider (~40% of the 
total area) and shows a symmetrical pattern with respect to ϕ,
ψ = 0°.
There are two ϕ, ψ maps for the only N-alkylated protein amino acid 
(Pro) as the Xxx–Pro tertiary peptide(amide) bond can rather easily 
accommodate in the unusual cis conformation (w=0°) besides the 
common trans conformation (w=180°).
The largest population of allowed conformations is seen for ϕ
values of about –60°, as this torsion angle permits the largest 
separation between the O atom (of the C=O group of the i residue) 
and the R side chain (in particular, the Cβ atom) of the i + 1
residue.
Most of these helical structures are characterized by a right-handed 
screw sense, as they are positioned below and on the left side of 
the diagonal with n = 2 (where the ‘flat’, zig-zag helices are found). 
The only left-handed helices are the (n = –3) type-II poly-(L-Pro)n
helix and the related collagen triple helix (see below), and the 
diastereomeric left-handed α-helix (7, 8 and 1′, respectively, in 
the figure).



1.5 Peptide Secondary Structures 

1.5.1 a-Helix

a-Helix: 
history

The α-helix (3.613-helix in the 1950 Bragg–Kendrew–Perutz notation [58])
is the most abundant and stable ordered secondary structure in proteins.
First proposed in 1950 by Pauling [59, 60], who used the ‘bottom-up’ 
approach.
This helix is termed α because the Pauling proposal was in part based on 
the X-ray diffraction data of the fibrous protein α-keratin (from wool and 
hair) published by Atsbury in the 1930s [61], who, however, using the 
‘top-down’ approach, failed to propose correct parameters for the α-helix.
First experimentally authenticated using X-ray diffraction by Perutz in 1951 
[62] and Kendrew in 1960 [63], who solved the crystal structures of the 
heme-containing, oxygen transporter, proteins hemoglobin and myoglobin, 
respectively.

a-Helix: 
structure

α-Helices are stabilized by intramolecular, backbone · · ·backbone 
C=O· · ·H–NH-bonds involving 13 atoms (C13 form or α-turn). The 
helical-type α-turn is one of the various pseudo-cyclic forms, first studied 
in detail by Pavone [64]. It encompasses entirely three amino acid residues 
(those with the R2, R3, and R4 side chains). The H bond is of the 1←5 type. 
All –CO–NH– bonds are in the trans conformation.

R1 R3 R4 R5R2

CO CO COCO

H

N

O

C CHCHCH

13

1

CHCH NHNH NHNH

The (right-handed) α-helical parameters (from the most recent statistical 
analysis of X-ray diffraction structures at atomic resolution of oligopeptides, 
published by Toniolo and Benedetti in 1991 [65]) are as follows:

ϕ = ° ψ = ° = = =–63 , –42 , 3.63, 1.56 , 5.67n d Å p Å

It is worth pointing out that the α-helix is not characterized by an integer 
number of amino acids per turn (3.6). This is why Pauling had to fight 
against the general view held by structural biochemists in the early 1950s 
to make his proposal accepted by the scientific community (at that time, 
only polypeptide helices with an integer number of amino acids per turn 
were considered stable enough).
A (right-handed) α-helical model of a decapeptide is viewed along the 
helix axis (the side chains are not eclipsed, but rather they are significantly 
staggered).



a-Helix: 
promoting 
residues

Several α-amino acids are considered particularly effective α-helix
promoters (Blout’s classification, 1962 [66]): Ala, Leu, Glu, Lys, Met, Phe, 
Tyr (their side chains are either linear or γ-branched).
L-Asp and L-Asn are also helicogenic, although moderately. However, due 
to their (intramolecular dipole · · ·dipole and H-bonding) side-chain to 
main-chain interactions, they are frequently found in (diastereomeric)
left-handed α-helical segments (helix 1′ in the Ramachandran map).

a-Helix: 
aggregates

Since in the α-helix there are~3.5 amino acids per turn, the smallest integer 
number characterizing this helix is 7, which requires two complete α-helical 
turns. This is the reason why the biologically relevant, amphiphilic (or 
amphipathic) helices (with one face hydrophobic and the other face 
hydrophilic) are characterized by heptad (a, b, c, d, e, f, g) repeats of amino 
acids, with analogous physicochemical properties at specific positions in the 
heptad (e.g. in aqueous solutions positions a and d require hydrophobic 
residues for antiparallel dimer formation; the hydrophilic positions e and g,
immediately on the back, reinforce dimer stability via ionic interactions) [67].
Membrane-active, antibacterial peptides typically fold into amphiphilic 
α-helices [68].
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In the case of α-keratin, in 1952 Crick [69] first suggested a self-association of 
two α-helices (termed a ‘coiled coil’ dimer) with an angle between their axes 
of about 20° and a ‘knob-into-holes’ packing mode of their side chains (for 
Leu-rich helices, in 1988 this motif was termed ‘Leu zipper’ by McNight [70]).
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1.5.2 310-Helix

310-Helix: 
history

First proposed by Taylor in 1941 [71], well before the classical α-helix (this 
is because the 310-helix is characterized by an integer number (3) of amino 
acids per turn).
The (right-handed) type-III β-turn (C10 form), according to the 1968
Venkatachalam classification [72], is the building block for the right-handed 
310-helix. Type-I and type-II β-turns, initially called β as they characterize
the cross-β structure (see below), were first proposed by Geddes et al. in 
1968 [73] who termed them type-A and type-B, respectively. A few months 
later, Venkatachalam [72] studied in detail type-I to type-III β-turns. Other 
types of β-turns were discussed later on [74].

110

ϕ3, ψ3

ϕ2, ψ2

–90°, –0°

–60°, –30°

80°, 0°

–60°, 120°

–60°, –30°

–60°, –30°

type-I β-turn type-II β-turn type-III β-turn

110 110

The 310-helix was first experimentally authenticated by Balaram in 
1978 [75] by X-ray diffraction analysis of a model, terminally protected, 
homo-pentapeptide from Aib (α-aminoisobutyric acid), namely 
Tos–(Aib)5–OMe, where the acceptor of the N-terminal intramolecular 
H-bond is one of the two oxygen atoms of the para-toluenesulfonamide
(Tos–NH–) group. The critical main-chain length for 310-helix formation 
for a terminally protected (Aib)n homo-peptide series was found to be 
n=3 (Benedetti and Toniolo in 1982 [76]).
310-Helical residues represent about 10% of all helical residues in globular 
proteins [77]. The majority of the 310-helices are short (3–4 residues) 
and are mostly located either at the N-terminus or at the C-terminus 
(‘extensions’) of α-helices, but some of them have been identified with a 
length of 7–12 residues. 310-Helices have been proposed as intermediates 
in the process of folding of α-helices in globular proteins [78].

310-Helix: 
structure

The (right-handed) 310-helical parameters (from the Toniolo and Benedetti 
statistical analysis [65]) are as follows:

ϕ = ° ψ = ° = = =–57 , –30 , 3.24, 1.94 , 6.29n d Å p Å

This helix is more elongated and less wide as compared to the α-helix. 
It is also less stable, since the lengths/angles of the intramolecular 
C=O···H–NH-bonds and the nonbonded steric interactions are less favorable. 
Remarkably, the experimentally found n value (3.24) is not an integer number. 
It is evident that this helix gains stability from a slight staggering of its side 
chains (almost one on top of the other after a complete helix turn).
As mentioned above, 310-helices are stabilized by intramolecular, 
backbone · · ·backbone, C=O· · ·H–NH-bonds including 10 atoms (C10
form or β-turn). The helical-type (type-III) β-turn is one of the various 
pseudo-cyclic forms that encompasses entirely two amino acid residues 
(those with the R2 and R3 side chains). The H-bond is of the 1← 4 type. 
All –CO–NH– amide bonds are in the trans conformation.



R1 R3 R4R2

CO COCO

HO

C CHCH CHCH NNH NHNH

10 1

310-Helix 
promoting 
residues

Because of the Thorpe–Ingold (gem-dimethyl) effect [79], Aib is strongly 
helicogenic and imparts an extremely high crystallinity to its peptides. It 
also characterizes a family of naturally occurring, membrane-active, 
peptide antibiotics called ‘peptaibols’ (Benedetti and Toniolo [80]) or 
‘peptaibiotics’ (Toniolo and Brückner [81]). Upon self-association, some of 
them form ion-conducting channels in the membranes.
The right-/left-handed 310-helical structures of the achiral (Aib)n (n=10, 11) 
homo-oligomers have been reported (Benedetti and Toniolo [82], Gessman 
et al. [83]). These are the longest 310-helices and the longest homo-
peptides from any amino acid, the 3D structures of which have been 
solved by X-ray diffraction (at atomic resolution). All of the Cα-methylated 
α-amino acids investigated tend to support the 310-helical structure [79].

H3C CH3

CO––HN
Aib

b-Bend
ribbon
spiral

A variant of the 310-helix is the β-bend ribbon spiral, generated by an
alternation of a Pro residue (lacking the H-bonding donor NH group) and 
a strongly helicogenic residue (Aib).
First observed by Karle and Balaram in 1987 [84] in their X-ray diffraction 
analysis of the peptaibol zervamycin, it was characterized in detail by 
X-ray diffraction in several (Aib–Pro)n model peptides in 1992 (Benedetti 
and Toniolo [85]).

All Aib–Pro bonds are trans. The Pro–Aib bonds deviate markedly 
(|Δw|>10°) from the planar trans value (180°).



1.5.3 2.27-Helix

310-Helix: 
spacer
and
template

Amphiphilic 310-helices can be easily prepared by taking advantage of 
appropriate amino acid side chains. In view of their almost threefold 
repeating units, they are even more suitable than α-helices as spacers 
(bridges) [86] or templates [87] for studies in various areas of chemistry.

Spacer Template

g-Turns There are two γ-turn (C7) conformations for an L-amino acid residue. Both
pseudo-cyclic forms include 7 atoms and encompass entirely one amino 
acid residue (that with the R2 side chain). The intramolecular H-bond is 
of the 1←3 type. The internal –CO–NH– amide bond is in the trans
conformation. The intramolecular H-bond is strongly bent. The w torsion 
angles deviate somewhat from the planar trans (180°) value. The first 
proposal and conformational energy computations were published by 
Némethy and Printz in 1972 [88].
These types of turns are rare in linear peptides. However, they are quite 
common in the conformationally forced, small ring, cyclo-4- and cyclo-
5-peptides. In globular proteins the ratio γ-turns/β-turns is~1:7 (the first 
γ-turn in a globular protein, thermolysin, where the central (R2) residue is 
Thr, was reported by Matthews in 1972 [89]).

R1 R3R2

CO CO

O

C CH CHCH NH NNH

H

For an L-residue, the two types of turns are called:
(I) γ-turn (j, y=70°, –70°) less stable; side-chain R: axial,
(II)  inverse γ-turn (j, y=–70°, 70°) more stable; side-chain R: equatorial.

inverse
γ-turn

γ-turn

2.27-Helices 
(g-helices)

Two or more consecutive γ-turns generate a 2.27(γ)-helix. This helix is
tighter and more elongated than the 310-helix. Its rise per residue (the d
parameter) is~2.80Å.

Series of inverse γ-turns

Series of γ-turns



1.5.4 Pleated-Sheet β-Structures

2.27-Helix: 
examples

Two consecutive inverse γ-turns (the incipient 2.27-helix) have been
reported in model peptides for the first time by Cativiela in 2005 [90] for 
the dipeptide heterochiral sequence –L-Pro–D–c3Dip–. This sequence will 
only form a γ-bend ribbon spiral (because Pro lacks the H-bonding donor 
NH group), not an ideal 2.27-helix. In any case, this heavily side-chain 
substituted Cα-cyclopropyl amino acid is a promising tool for the 
construction of the 2.27-helix.

NHN

Pro C3Dip

CCO CO COCH

In globular proteins two examples are known: (i) a repetive γ-turn
segment formed by the two residues –Gly–Ile– (a distorted γ-turn
followed by a regular inverse γ-turn) [91] and (ii) the serpentine shape of 
three consecutive, inverse γ-turns formed by the –Thr–Lys–Gln– stretch 
[92]. In any case, it is quite evident that much work remains to be 
performed in this specific area of ordered peptide secondary structures.

b-Sheets: 
history

The pleated-sheet β-structure is the second most common type of ordered 
secondary structure in globular proteins.
Both types [parallel (β||)- or antiparallel (β⊥)-chains] of pleated-sheet 
β-structures have been proposed by Pauling and Corey in 1951 [93].
The pleated-sheet β-structures (where each residue is extended) are more 
stable than the flat-sheet β-structures (where each residue is fully extended, 
j=y=180°) (see below), because in the former less unfavorable intra- and 
interresidue(s) nonbonded interactions are operative.

b-Sheets: 
structures

The antiparallel-chain β-sheet structure is more stable (and common) 
than its parallel-chain counterpart since the directionality of its interchain 
H-bonds is optimal.
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In the parallel-chain β-sheet structure the distances between the Cβ atoms 
of the side chains (R) of the residues in register and in adjacent strands 
repeat themselves identically (~ 4.5Å). In contrast, in the antiparallel-
chain β-sheet structure these same distances strictly alternate between 
a longer distance (~ 5.7Å) and a shorter distance (~ 3.5Å). The short 
(~ 3.5Å) distance in the antiparallel-chain β-sheet structure well explains 
the observation that severely sterically hindered amino acids (e.g. the 
β-branched Val and Ile) strongly prefer the parallel-chain β-sheet structure 
(Toniolo in 1978 [94]).
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b-Sheets: 
parameters

In both types of β-sheet structures the side chains of successive residues 
alternate (up/down) with respect to the average plane of the main chain. 
Thus, if the polar/apolar characters of the side chains alternate as well, 
then amphiphilic β-sheet structures may originate [95].
The helical parameters for the two types of pleated-sheet β-structures are 
close [95]:
Antiparallel: j=–139°, y=135°, n=2.00, d=3.47Å, p=6.94Å
Parallel: j=–119°, y=113°, n=2.00, d=3.50Å, p=7.00Å

Due to their integer number of amino acids per turn (n=2), both types of 
β-sheet structures lie on the corresponding diagonal of the Ramachandran 
map. The differences of their j, y torsion angles from those of the fully 
extended structure (see below) explain their slightly wavy appearance.

AntiparallelParallel

The pleated-sheet β-structures can be either of the intra- or inter-molecular
type. For example, they can be of the antiparallel-chain type.
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b-Sheets: 
promoting
residues

According to the Blout classification (1962) [66], non α-helix forming and, 
as a consequence, effective β-sheet structure-forming amino acid residues 
are those with sterically demanding, β-branched, side chains (i.e. Val, Ile, 
and Thr) and those that can form side-chain to main-chain H-bonds (i.e. 
Ser, Thr, Cys). While Pro is a β-sheet structure breaker, one of the preferred 
structures for Gly is the antiparallel-chain β-sheet structure.
The β-sheet structure does also occur in fibrous proteins. A well-known 
case is that of fibroin [96], the protein characterizing the Bombix mori silk, 
which is rich not only in Gly and Ala but in Ser as well, and largely adopts 
an amphiphilic antiparallel-chain β-sheet structure (the word serine comes 
from the Greek term ‘seros’, which means silk).

b-Sheets: 
effects

Due to their extremely poor solubility, β-sheet structures exhibit low reactivity 
in peptide bond formation (‘difficult sequences’; Mutter and Toniolo [97]).
More importantly, the β-sheet structures are responsible for the onset of a 
variety of neurodegenerative ‘conformational diseases’, such as those 
characterized by fibril formation and amyloid deposits (Alzheimer, prion, 
Parkinson, Huntington, Machado ataxia, dementia with Lewy bodies, kuru, 
Creutzfeld–Jakob, bovine spongiform encephalopathy or ‘mad-cow’ diseases).

2.05-Helix: 
structure

The fully extended peptide conformation, or 2.05-helix, with j=y=180°,
was proposed at an early stage in structural studies of proteins [98]. 
The repeating motif of the fully extended peptide conformation is the 
intramolecularly H-bonded form depicted in the figure. The relative 
disposition of the two dipoles, N–H and C=O, is such that there is 
obviously some interaction between them. Since these four atoms, 
together with the central Cα-atom, are involved in a pentagonal pseudo-
cyclic structure, this conformation is also called the C5 structure [99].

H
R H(3)

N(3)

N(2) C′(2)
Cα(2)C′(1)

O(2)H(2)

O(1)



This type (i→ i) of intramolecular H-bond is the only one among those 
mentioned in this chapter where the N–H donor group precedes the C=O 
acceptor group in the sequence. All other intramolecular H-bonds are of 
the i← i+n type. In other words, in this helix the usual 
C=O⋅⋅⋅H–NH-bond direction has become N–H⋅⋅⋅O=C.
The influence of the bulkiness of the lateral substituent can easily be 
explained by considering the intramolecular nonbonded interactions 
between the side-chain group R and the preceding C=O and following 
N–H groups, which induce a warping of this nonsymmetrical structure.
The bond angles internal to the pentagonal ring are smaller, while those 
including atoms of the main chain (external to the ring system) are larger 
than the corresponding average bond angles observed in peptides.
The intramolecular Ni⋅⋅⋅Oi distance (2.54Å) in the H-bonded, fully
extended, peptides is much shorter than the corresponding distance 
usually observed in helical peptides (2.8–3.0Å) [100, 101].
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Interestingly, the critical sp3 N–Cα–C′ bond angle (τ) is dramatically 
narrowed (from 109.5° to less than 103°).
From calculations it turns out that the energy ΔE (kcal/mol) of the C5
conformation of the Ac–Deg–NHMe (Ac, acetyl; NHMe, methylamino) 
derivative becomes lower than that of the helical conformation when the 
bond angle t is<107° [102].

2.05-Helix: 
promoting
residues
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The highly crystalline nature of peptides rich in the achiral Cα-
tetrasubstituted residues shown above (with two side chains identical and 
longer than methyls) was exploited for extensive X-ray diffraction analyses 
[100, 101]. Multiple C5 conformations are a common observation for 
these achiral peptides in the crystal state.
Interestingly:
(i)   The Dpng and Deg homo-peptides represent the first examples (Toniolo 

in 1984 [103] and 1988 [102], respectively) in which consecutive C5
forms (2.05-helices) have been experimentally observed.



(ii) The N–H and C=O groups characterizing this intramolecularly H-bonded 
structure are not involved in the intermolecular H-bonding scheme.

(iii)  The amino acid side chains of Deg and Dpng tend to be fully 
extended to relieve the unfavorable intramolecular side chain-to-
main chain and side chain-to-side chain interactions.

(iv)  The axial translation per residue in this helix is≈3.70Å, the longest 
possible for a single amino acid, which makes this conformation 
extremely attractive for its use as a spacer [86, 104].

2.05-Helix: 
natural 
occurrence

For coded amino acids, unequivocal verification of the occurrence of the 
C5 form has been obtained in the crystal state by X-ray diffraction 
analyses of a few, favorable compounds, i.e. Gly- and Ala-rich peptides 
with short side chains [98, 105].
In globular proteins a repeating C5 motif has been so far authenticated 
only in the X-ray diffraction analysis of the –(Gly)4– sequence of His–
tRNA–synthetase [106].

2.05-Helix: 
examples

The X-ray diffraction structure of the 2.05-helical, achiral, homo-
pentapeptide Tfa–(Deg)5–OtBu (Tfa, trifluoroacetyl) shows five 
consecutive N–H⋅⋅⋅O=C intramolecular H-bonds, each giving rise to a C5
form [102]. This is the longest 2.05-helix published to date.

C5

C5

C5

C5C5

FF

F

In recent years, Imawaka, Tanaka, and Suemune (2000) [107] and Crisma 
et al. (2011) [108] clearly demonstrated that even for homo-peptides based 
on Cα-tetrasubstituted chiral α-amino acids the 2.05-helix is a common
observation, provided that both amino acid side chains are longer than a 
methyl group (e.g. any Cα-ethylated protein amino acid, those from except 
Gly and Ala). As an example, the X-ray diffraction structure of the 2.05-
helical, Tfa/OtBu protected, chiral homo-tripeptide based on Cα-ethyl, 
Cα-n-pentylglycine (Epg) has been reported [108]. Three, consecutive 
N–H⋅⋅⋅O=C intramolecular H-bonds, each generating a C5 form, are observed.

CH3

(CH2)4

H3C

H2C

HN CO

Epg

F

F
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Moreover, homo-peptides from Cα,β-didehydro-alanine (ΔAla),
characterized by sp2 α- and β-carbon atoms, adopt a 2.05-helical structure
in solution and in the crystalline state [109]. They are stabilized by two 
types of intramolecular H-bonds:
(i)  Ni–H⋅⋅⋅Oi=Ci (forming a five-membered ring, typical of the 2.05-helix);
(ii) Cβi+1–H⋅⋅⋅Oi=Ci (forming a six-membered ring, typical of ΔAla peptides).
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These completely flat molecules form planar sheets. They exist in isolation 
and pack in layers without any significant contribution from 
intermolecular C=O⋅⋅⋅H–NH-bonds. These graphene-like molecules may 
represent potentially active bridges in electron transfer reactions.

1.5.6 Poly-(l-Pro)
n
 Helices and Collagen Triple Helix

Poly(L-Pro)n

helices

(4R)-HypPro

CO CO

HO

N N
1

5
4 3

2

The j torsion angle of Pro and Hyp (4-hydroxyproline) is fixed by the 
pyrrolidine cyclic structure (to about –70° for the L-enantiomer).

Type-I Type-II

Type-I and type-II poly(L-Pro)n helix models [110–112]. Appropriate 
side-chain replacements may induce an amphiphilic character to type-II 
poly-(L-Pro)n, a strictly threefold helix. This is the case of the 
[L-Pro–L-Pro–4(R)–L–Hyp]3 type-II helix represented above (right). The 
view down the helix axis emphasizes its amphiphilic character.
Type-I and type-II poly (L-Pro)n helices are right- and left-handed,
respectively.
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Their sets of j, y torsion angles are close, but they differ substantially 
because form I has all tertiary peptide bonds in the cis conformation 
(w = 0°), while in the form II these bonds are all in the trans
conformation (w = 180°). Therefore, the less stable form I is remarkably 
more compact than the more stable form II. The kinetics of the folding 
and unfolding processes in globular proteins are often governed by the 
cis/trans Xxx–Pro conformational transition [113].
Because all peptide bonds are tertiary (no NH groups), these two helices 
are not stabilized by any intramolecular H-bond. Their interconversions 
(called ‘mutarotations’ because they were originally followed by looking 
at variations of the polarimetric values with time) are solvent driven. 
Type-II poly-(L-Pro)n is the dimorph largely prevailing in polar solvents.

Poly
(L-Pro)n
helices: 
parameters

The parameters characterizing these two helices are as follows:

Form I Form II

j (°) –83 –80 The j, y values are very close.
y (°) 158 150

w (°) 0 180 Major conformational difference.

n 3.3 –3.0 The sign ‘-‘ indicates a left-handed helix 
for the L-enantiomer.

d (Å) 1.9 3.1 Form II is more elongated than form I.
p (Å) 6.3 9.3

In L-Pro-containing peptides the value of the L-Pro y torsion angles may 
be either~150° (the preferred trans′ conformation, semi-extended Pro) 
or ≅ –30° (the less common cis′ conformation, helical Pro). In globular 
and transmembrane proteins [113, 114], Pro has indeed been found in 
310-/α-helices, but only at the first two/three positions, because it lacks
the H-bonding donor peptide NH group (the NH groups at these 
positions are not involved in the intramolecular H-bonding schemes of 
the 310-/α-helices). If inserted in an internal position of a helix, Pro has
been shown to induce a kink of~20°.
Homo-(L-Pro)n stretches should be used with caution as spacers 
or bridges (often termed ‘rigid rods’), because their rigidity is 
questionable in view of the variety of the possible conformations 
discussed above.

Collagen 
triple helix

The most widely distributed fibrous protein in human body is collagen. It is 
characterized by a repeating triplet of amino acids, (L-Pro–Xxx–Gly)n, where 
Xxx is almost any α-amino acid (‘consensus’ sequence). Its 3D structure is a 
‘triple helix coiled coil’. It was first proposed by Ramachandran and Kartha 
in 1955 [115]. The model was improved by Rich and Crick in the same year 
[116] (see also Ramachandran in 1956 [117]).
Each helix is closely related to the left-handed type-II poly(L-Pro)n
conformation. This is why collagen is very rich in Pro. Gly is always 
present at position 2 of the triplet because it is the least sterically 
demanding amino acid (in collagen, Gly occurs at each extremely 
hindered intersection of the three strands of the triple helix). Gly ‘point 
mutations’ induce severe ‘molecular diseases’ in bones [118]. The three 
helices are parallel to each other and in register.
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